新加坡弹射座椅多少米
Ⅰ ACESII弹射座椅
ACES II是美国空军最成功的飞行员逃逸系统,它成功地解救了500多条生命。ACES II结构健壮、重量轻、易于维护。它完成的逃逸包线为0~600节(1111千米/时)当量空速和0~50000英尺(15240米)高度。它在设计上还能在0高度和0速度情况下安全弹射一名机组人员。在低速时,ACES II启动后1.8秒开伞。另外,在弹射期间,有一个陀螺控制系统稳定座椅。
Ⅱ 弹射座椅的最低弹射高度和最小弹射速度是多少
00弹射座椅,就是0高度0速度下,仍然能够完成弹射。 这两天不就有个新闻么,韩国空军一个少将,在地面上的F15战斗机里面,无意中触动了弹射按钮,在飞机静止条件下被弹射了出去。这个少将被弹射到了五十多米高空,随后座椅的降落伞打开,安然落到地面,没有受伤。 ---------- 飞机在空中是会有很多姿态的。00弹射座椅主要针对的是正常姿态下可以安全有效的弹射。但是如果战斗机在倒飞或者盘旋时,弹射座椅出去,是对飞行员有危险的。甚至有时候战斗机在空中直接爆炸,及时飞行员及时弹射出去,四溅的战斗机爆炸碎片,依然对飞行员是有杀伤力的。 而且,很多飞行员在战斗机出现事故时,会有意尽量修改战斗机的坠落点,避免战斗机落入人口密集区造成更大危害,所以会错过最佳的弹射自救的时机。 比如中国前段时间遇难的一名空军飞行员,为了防止发动机停车的战斗机落入市区里,没有及时弹射,而是选择了推压操作杆,使战斗机提早坠落地面,在完成了这一系列动作后,他才弹射出去,但是已经错过了安全的弹射时机,最终遇难。 前些天在外国航展上失事的加拿大空军的F18战斗机,它是在机身侧身状态下,飞行员弹射出去的。当时这架战斗机距离地面也就三十多米高,如果再晚个一两秒,飞机机身倾覆颠倒了,飞行员即使弹射出来,也会直接落到地面毙命。
Ⅲ 弹射系统保证飞行员大于多少米的高度安全逃生
弹射座椅是在飞机遇难时依靠座椅下的动力装置将飞行员弹射出机舱,然后张开降落伞使飞行员安全降落的座椅型救生装置。现代作战飞机和一些小型民用飞机大多有弹射座椅。
第一次世界大战中,各国开始为作战飞机的飞行员配备降落伞。随着飞机速度增大,飞行员爬出座舱跳伞日益困难。第二次世界大战时,战斗机的时速已提高到600公里以上,飞行员跳伞要冒着被强风吹倒或被刮撞到飞机尾翼上的。德国首先开始了对能把飞行员弹射出机舱的座椅的研究。在1938年德国曾试验过橡筋动力的弹射座椅,但未达到实用要求。后来又研制了以压缩空气为动力的弹射座椅,尽管装备了德国的军用飞机,但性能还不够理想。于是他们又研制以火药为动力的弹射座椅。他们用亨克尔—289和道尼—335型军用飞机进行试验,将改装后的高射炮药装置在飞机座椅上,利用弹药爆炸的力量将飞行员和座椅一起弹射出机舱。1940年进行了地面试验,成功地把试验人员从地面的飞机里弹射到空中。后来又经过飞行弹射试验,达到了实用要求,于第二次世界大战结束前装备了空军。
战后,以火药为动力的弹射座椅在不断改进,到50年代,已在喷气式飞机上普遍使用。为解决低空救生问题,美、英等国在50年代又相继研制出火箭助推的组合动力弹射座椅。60年代,为使高空高速飞行中的飞机驾驶员跳伞时免受高速、低温、缺氧等因素的伤害,美、苏两国在弹射座椅的基础上,又首先研制成功密闭和半密闭式的弹射救生系统。70年代初,美国试验了可飞弹射救生系统,座椅离机后变为可控飞行器,飞行一定距离后,人椅分离,开伞降落。目前各国主要战斗机上多为敞开式的火箭弹射座椅,其救生性能一般可满足飞机在零高度、速度为—1200公里/小时条件下的救生要求。
(图)(使用弹射座椅的过程:1> 飞行员猛拉座椅顶部的扳机柄;2>拉下保护脸部免受强风吹袭的面罩,座椅顶部冲破座舱罩;3>自动固定装置启动,固定住飞行员的腿,一具小降落伞立即张开,以稳定座椅;5>腿部固定装置自动松开;6>座椅与飞行员分离;<7,8>主降落伞张开,使飞行员安全着陆
Ⅳ 汽车是否可以安装弹射座椅
首先有人会想到高度的问题,虽然目前的弹射座椅,已经能够做到0高度弹射逃生,但是如果弹射高度在不足50米的情况下,很有可能会因为撑不开降落伞而落地身亡。并且50米已经是最低的极限,也只有受过专业训练的飞行员才能做到。
况且,如何将庞大的弹射座椅安装在车座上,也是一个不得不考虑的问题,即便研发出了体积较小的弹射座椅,助推器的燃料是否能够助推50米以上?是否能够推动一个正常体重的人?一个问题便会引发一系列的难题。
并且,大多数车祸会导致翻车,在何种情况下使用弹射座椅也是一个问题,如果在汽车尚未发生碰撞之际便进行弹射,那么高速行驶中的汽车又该去往何处?自己的弹射逃离,极有可能给他人带来不幸。
此外,在地面交通的周边布满了电网、树木,甚至是涵洞、桥洞等等,如果在这样的环境下进行弹射,那么比待在汽车中的风险更大。
而最后便是资金的问题了,以空军K-36弹射座椅来看,售价已经高达数百万美元,即便研发出小型弹射座椅,售价也会在数十万美元之间,对于常人来说根本就消费不起,因此,暂且不考虑司机是否接受过弹射训练,从综合性能、实用性以及资金方面来讲,在汽车中安置弹射座椅是行不通的。
Ⅳ 禁止状态下,飞机弹射座椅能把人能弹多高
“0-0”弹射器的弹射高度在70米左右,50米时撑不开降落伞的,70米是撑开降落伞的最低高度了。
弹射需要考虑的因素有很多,不光是最低高度与速度,还要考虑最高速度和最高高度。如果是双座甚至是多座飞机(如、F/A-18、苏-34、E/A-6这样的飞机还要考虑成员之间的安全弹射等)因为飞行员是由相对静止的状态瞬间被加速到足以摆脱飞机的速度(高速飞行的飞机还要考虑是否会碰到垂直尾翼等)以及飞行员所能承受的载荷(这就是弹射高度不可能太高的原因之一,还要一个原因,飞机如果是倒飞需要弹射呢)。不然会给飞行员造成巨大的伤害,甚至是终身的伤害,这样弹射出来人即使活了,也是没用的。
Ⅵ 弹射座椅的技术指标
世界上所有的弹射坐椅都具备零零弹射功能,就是说零高度零速度(接近静态)的条件下100%的弹射成功。 先有以压缩空气为动力的弹射坐椅,后又研制了以火药为动力的弹射坐椅。
虽然21世纪初世界上所有的火箭弹射座椅都具备零高度零速度(接近静态)的条件下弹射并成功开伞的功能,但飞行员能否安全着地,还受很多因素的影响,例如飞机速度、角度,弹射角度等等,所以说弹射座椅只是一件尽可能保证飞行员生存几率的工具,并不是绝对安全的逃生设备。 基本安装在一、二代战斗机上,代表机型:米格19、米格19教练机。
1> 由飞行员手力拉动弹射手柄或拉环;
2> 座椅束缚装置将飞行员身体及腿部束紧,避免弹射时身体及腿部与座舱内设备的碰撞;
3> 抛舱盖装置工作,释放座舱锁,依靠空气将座舱盖带走,同时拉开之相连的牵引伞保险;
4> 安装在座椅后部的导向装置工作,弹射弹被击发,产生气体压力将飞行员连同座椅一起推向舱外;
5> 在座椅上升过程中,抗荷服、氧气面罩及耳机等飞行员穿着或佩戴的装置会自动与座舱分离;
6> 座椅离开座舱后受重力影响开始下坠,牵引伞随即张开并牵引出主降落伞;
7> 人与座椅的分离过程,同火箭弹射座椅基本一致。
由于旧式弹射座椅没有火箭弹射座椅的火箭动力,因此无法在超低空条件下使用,飞行员的生存几率相对较小,早已被淘汰,但由于安装有该类座椅的飞机数量多,并且仍在部分发展中国家服役,因此提及一下,但终会随着新型飞机的装备而淡出历史舞台。 现代战斗机已广泛使用,代表机型歼8、歼10
1> 由飞行员手力拉动弹射手柄或拉环;
2> 座椅束缚装置将飞行员身体及腿部束紧,避免弹射时身体及腿部与座舱内设备的碰撞;
3> 抛舱盖装置工作,将座舱锁点破坏并弹开舱盖(或释放座舱锁,靠空气将座舱盖带走);
4> 安装在座椅后部的导向装置工作,主弹射弹被击发,将飞行员连同座椅一起射向舱外;
5> 在座椅上升过程中,抗荷服、氧气面罩及耳机等飞行员穿着或佩戴的装置会自动与座舱分离;
6> 当座椅上升到一定高度时,安装在座椅底部的一个或多个火箭包工作,加速座椅离开座舱的过程,在低高度或零高度时,由火箭提供的动力可将飞行员带到安全开伞的高度,提高飞行员的生存几率;
7> 座椅离开座舱时,会射出一具连接在主降落伞上的小降落伞,用于稳定座椅飞行和辅助打开主降落伞,也被称为稳定伞或牵引伞;
8> 当火箭停止工作后,座椅受重力影响开始下坠,依靠与飞行员降落伞相连上的牵引伞拉开主降落伞(或自动开伞器工作射出主降落伞);
9> 人与座椅的分离,可由飞行员自己拉开锁扣释放座椅束缚装置进行分离,但在因高度过低时会由自动分离装置完成(因弹射过程飞行员身体所承受的负荷极大,可能出现大脑缺血性晕眩,甚至昏迷,而无法自行完成分离过程),自动分离装置设置的高度一般为300米。
Ⅶ 有无米格-23介绍
米格-23
米格-23
米格-23 是米高扬一生中最后一个亲自挂帅的项目,他本人在1969 年 5 月 27 日于办公室中心脏病突然发作,被立即送入医院,从此一病不起,经若干次大小手术后于最后一次心脏手术后不治去世。为纪念他,米高扬的办公室内的摆设至今仍保持着他最后一个工作日时的样子。
米格-23是苏联第一种变后掠翼战斗机,1967年首飞,绰号“鞭挞者”。60 年代初米格设计局的设计师分析了美国在研制F-111后,根据自己在不同状态下的风洞的试验结果,证明变后掠翼可以极大改善飞机的性能,于是米格-23的发展得到了高度重视,甚至未完成全部试飞项目就正式服役。米格-23多次出现在阿富汗、中东、非洲的战场上,并取得了一定的战绩。
米格-23 有三种主要的改型:米格-23S,米格-23M,米格-23ML。S 型即最初生产型,装了推力6900 公斤的 R-27-F2M-300发动机,改进了火控,红外传感器等。安装一门 23 毫米双管机炮。机身后部有四块减速板,垂尾根部有减速伞舱。腹鳍是很特别的折叠式。和原型机在外观上不同在于垂尾后移。此型仅从 1969 年中到 1970 年底量产,共生产了 50 架。
米格-23M 型是主要的生产型,也是生产装备数目最多的 米格-23 改进型。该型改用了 R-23-300发动机,重新设计了头部以容纳新型雷达,可挂装多种空空弹,典型外挂是机翼下的挂点挂中程空空导弹(共 2 枚),进气道下的 2 个挂点用复合挂架来挂 4 枚近距格斗导弹,机身下部中线挂架挂一副油箱。此型的出口简化型叫 MF 或 MS 型,换装了较老的雷达火控电子设备和较差的发动机。
米格-23ML从1976一直生产到1981年,并大量出口。它是米格-23M的改进型,减小了垂尾面积,更新了大部分主要装备,整机性能有很大的提高。
比较有趣的是1989年7月,驻波兰苏联空军的一架米格-23在训练过程中发动机发生故障,飞行员跳伞后竟然继续保持低空飞行,一直飞过多个国家,直到燃料耗尽后才坠落在比利时首都布鲁塞尔附近的一个小村庄,这一事例足以证明米格-23出色的低空飞行性能。
Mig-23M型技术参数
外形尺寸:15.88(机长,不计空速管)×14(翼展,后掠角18度40分)/7.78(翼展,后掠角74度40分)×4.82(机高)米。
机翼面积:34.16㎡。
正常起飞重量:15620公斤。
最大起飞重量:18810公斤。
最大平飞速度:2400公里/小时(2.35马赫)。
实用升限:17800米。
爬升率:160米/秒(高度200米)。
作战半径:1161公里。
转场航程:2900公里。
发动机:1台R-23-300发动机,静推力8300公斤,加力推力12500公斤。
电子设备:“高市云雀”雷达,搜索距离85公里,跟踪距离54公里;激光测距仪;“警笛”3雷达台警系统;多曲勒导航设备。
武器系统:1门23毫米双管机炮。机身下共有5个挂架,可挂火箭、空对空导弹(AA-7、AA-8)及其它各种武器。
研制背景与发展历程
米格-23 是由莫斯科米高扬·格列维奇设计局(今米格-莫斯科飞机科研生产联合体)研制的米格-21(北约称“鱼窝”)后继机种,总设计师是 A.I.米高扬和 R.A.别里亚科夫,主管设计师为 A.A.安德烈耶夫、V.A.拉夫罗夫和 G.A.谢多夫。机号为 231 的首架变后掠翼原型机(设计局编号 23-11)在 1967 年 6 月 10 日由 A.V.费多托夫首飞,并于同年 7 月 9 日的苏联航空节期间在莫斯科图西诺空军机场首次公开展示,并被北约命名为“鞭挞者”(Flogger)。次年 7 月 231 号米格 23-11 完成 98 次试飞后与另 2 架原型机一起交付空军进行试验(原型机总共生产了 10 架),1969 年年中投入试生产,次年装备苏联空军(V-VS)歼击-轰炸航空兵,1973 年开始在莫斯科“劳动旗帜”工厂(今米格-莫斯科飞机科研生产联合体)和伊尔库茨克工厂(今伊尔库茨克飞机科研联合体)大量生产,到 1984 年停产时该家族累计生产数量超过 6,000 架(其中莫斯科工厂生产数量为 4,278 架),超过美国 F-4“鬼怪”II系列(5,195 架),是世界上产量最大的第 3 代战斗机(俄标)。
米高扬和格列维奇:米格-23 是米高扬亲自主持设计的最后一个作品
编号 231 的 23-11 第 1 架原型机:变后掠翼飞机与常规设计相比,在同一目标设计点上的性能通常不如后者,但是在整个飞行包线内的非设计点区域则具有更好的性能
米格-23 系列是米格-23 家族中主要用于制空的多用途战斗机(该家族还包括用于对地攻击的米格-27 系列),包括以下型别(除 23-11 原型机):
·米格-23S 系列:包括 S/SM 两种型别。S 是最初试生产型,首架原型机在 1969 年 5 月 28 日首飞,SM 是其使用 APU-13 新型挂架的改型。S 系列在 1970 年即停产,总共生产了 50 架;
米格-23S:米格-23 的预定作战对象是美国 F-100 系列(F-102/104/105/106)、多用途的 F-4 系列和法国“幻影”III,此外还要求拦截轰炸机
·米格-23UB(设计局编号 23-51):是米格-23 家族中的唯一双座型,用于教练但保留格斗能力。第 1 架以 S 型为基础改装(1969 年 5 月首飞),后续机则在 M 型基础上发展,因此也称米格-23UM。该型别生产从 1970 年持续到 1978 年,总共生产了 769 架;
米格-23UB
·米格-23A:是米格-23 家族中唯一的舰载型。原为苏联 1972 年完成预先设计的 1160 型航母发展,后由于 1160 项目取消而改为舰载战斗机试验机,在 1980 年开始进行斜板滑跃起飞技术的试验(其成果后用于苏-33 和米格-29K);
·米格-23M 系列:包括 M/MS/ML/MF/P(MLA)/MLD 六种型别,是米格-23 系列的主力。M 是 S 的改型(M 即表示“改进”),1972 年 6 月首飞,1973 年服役;MS 是 M 的简化出口型(系 M 系列中性能最差的1种),1973 年首飞;ML(设计局编号 23-12)是 M 的改型,1974 年首飞,1976 年投产,1981 年停产,也有大量出口;MF 是与 M 基本相当的出口型,1977 年首飞;P(MLA)(设计局编号 23-14)是 1977 年开始在 ML 型基础上为国土防空军(P-VO)研制的截击型,1979 年首飞;MLD(设计局编号 23-18)是米格-23 最后一种改型,在 1984 年后改进。
主要设计特点
基本气动设计
米格-23 是苏联继苏-17(北约称“装配匠”B)后的第 2 种变后掠翼超音速战斗轰炸机,它在气动上参照了美国 F-111 变后掠翼战斗轰炸机,继承了 F-111 最初的多用途设计思想并要求具有宽阔的飞行速度范围、较大的航程和作战半径、良好的起降性能和突出中低空机动性能。这在它气动布局上的主要反映便是以变后掠上单翼布局取代了米格战斗机传统的中单翼结构形式。
米格-23 变后掠翼增重:米格-23 的变后掠翼带来的结构增重约为 600 千克(机翼/起落架各 400/200 千克),加上其它部分飞机累计增重约 1,100 千克
米格-23 的机翼前方有较大的固定边条(前缘后掠角70°),机翼转轴沿展向位于距机身轴线约 21.4% 半翼展处(主要考虑连接机身和活动翼的翼套的大小.翼展取最小后掠角时数据),沿横向位于机翼最大厚度处(主要考虑使机翼的密封和转轴的整流更方便),机翼具有 18°40′、47°40′ 和 74°40′ 三个可用前缘后掠角(它们在飞行员操纵手柄上对应的标示值为 16°/45°/72°;不过该操纵手柄事实上可使机翼停留在最大和最小后掠角之间的任意位置),其中 18°40′ 的后掠角用于起降、转场巡航和巡逻待机;74°40′ 的后掠角用于超音速和低空大表速飞行;47°40′ 的后掠角则用于空中格斗。其它有利于提高亚音速性能的设计有:活动翼前后缘均布置有多段式襟翼,其中后缘的单缝襟翼基本占有整个后缘长度(其最外侧一段可以在最大后掠角状态下独立使用),大大提高了飞机的起降性能;每个活动翼在后缘襟翼前方布置两片单偏扰流片,可结合差动平尾进行滚转控制,不仅满足了滚转操纵力矩的需要,还使在飞机活动翼后缘布置全展向襟翼成为可能(否则要布置控制滚转的副翼);活动翼上加装了一个 2.4° 的锯齿形前缘(23-11 和 23S/SM 无此锯齿)并在机翼沿展向做中等程度的锥形扭转,提高了高亚音速巡航状态下的升阻比,可降低油耗、提高续航时间和航程等。机翼具有 4° 的下反角,后机身布置的 4 块减速板(平尾上下对称于机身轴线各布置 2 块)。
米格-23 采用略低于机翼平面全动式斜轴平尾(平尾转轴后掠角为 45°),前后缘后掠角度分别为 55°40′ 和 15°,面积 6.93 平方米,展弦比 1.84。当做升降舵使用时平尾偏转范围为-24°~+8.5°(以前缘向上偏转为正),差动滚转时最大差角大小为 10°(机翼后掠角为 18°40′~47°40′ 时)和 6.5°(机翼后掠角为 47°40′~74°40′ 时),机翼上的扰流片则与平尾差动机构和机翼转动机构联动,机翼后掠 18°40′ 时进行滚转控制其偏角为 45°,后掠角为 74°40′ 时偏角为 0°。它与差动平尾的结合可为米格-23 提供足够的滚转力矩。
米格-23 的垂直安定面设计对其达到 M2.35 的最大设计速度至关重要(米格-21 飞机则由于垂直尾翼安定性不够被迫限速在 M2.05),其垂尾前缘后掠角 62°21′,不计背鳍的面积为 6.01 平方米(计背鳍的面积为 7.21 平方米),展弦比 0.77,其中方向舵面积为 0.93 平方米,最大偏转角 +/-25°;腹鳍为单块折叠式(折叠角为 95°),总面积 1.46 平方米(其中可折叠部分 1.105 平方米),展弦比 0.45,腹鳍鳍臂长 4.5 米。该腹鳍采用液压控制并与起落架交联,当起落架放下时腹鳍折起,起落架收起时腹鳍放下。
米格-23 的主要尺寸数据是:机长 15.88 米(包括空速管则为 16.71 米),翼展 7.78 米(74°40′ 后掠)和 14.0 米(18°40′ 后掠),机高 4.82 米;最大和最小后掠时机翼面积分别为 34.16 和 37.35 平方米(但 23-11 和 S/SM 分别为 29.89 和 32.1 平方米)。
推进系统设计
推进系统设计主要包括进排气系统设计和发动机选择。米格-23 的设计要求在这方面的主要反映是它以两侧进气方式取代了米格战斗机传统的机头进气方式,同时采用大推力的新型发动机。
米格-23 系列采用矩形外部压缩(指空气在进入进气道前即被压缩)两侧进气道,其设计直接参照了美国的 F-4。进气口前有平行于机身侧面安装的3级垂直斜板,它们与机身侧表面有 55 毫米的距离,形成了可避免贴着机身流动的低能量附面层进入进气道中的附面层槽道;最靠近进气口的第 3 级斜板上还开有吸除贴着斜板形成的附面层气流的小孔,可将附面层气流排入与机身侧表面之间的附面层槽道中,提高进气道的进气效率。每侧进气道外侧表面安装有两个上下布置的矩形辅助进气门,其开关由进气道内与外部空气压力差控制,可保证发动机工作需要的进气量。3 级斜板中最前方的第 1 级固定,第 2、3 级则可调(偏转角度由斜板调节系统根据发动机压气机增压比控制),由此构成了 4 波系进气道。
米格-23 使用了几种不同型别的涡喷发动机,均为莫斯科的图曼斯基设计局(今俄罗斯航空发动机科技联合体)或莫斯科留里卡设计局(今“留里卡-土星”联合股份公司)的产品(前者产品标识为 R,后者为 AL)。最主要 3 种是 R-27F2M-300(用于 S/SM/UB)、R-29-300(用于M/MS/MF)、和 R-35-300(用于ML/P(MLA)/MLD),它们(R-27/29/35 系列)的总设计师均为 K.哈察图诺夫,主要性能数据如下:
·R-27F2M-300:尺寸约 4,850×1,060 毫米(长×最大直径,下同),重 1,725 千克;空气流量 95 千克/秒,总增压比 10.9,涡轮前温度 1,370 K;最大和加力推力分别约 6,900 和 10,000 千克,推重比 5.8;最大和加力推力下耗油率分别约 0.98 和 2.09 千克/千克推力·小时。
·R-29-300:尺寸约 4,992×1,088 毫米,重 1,992 千克;空气流量 110 千克/秒,总增压比 12.88,涡轮前温度 1,410K;巡航、额定、最大、小加力和全加力推力分别约 5,300、6,100、8,300、9,800 和 12,500 千克,对应的涡轮后温度分别为 913、913、1,113、1,068 和,1,113K,推重比 6.5;巡航、额定、最大、小加力和全加力推力下的耗油率分别约 0.83、0.84、0.96、1.5 和 2.03 千克/千克推力·小时。
R-29-300
·R-35-300:长约 4,975 毫米,重约 1,800 千克;总增压比 13.0,涡轮前温度 1,520K;最大推力约 8,550 千克,加力推力约 13,000 千克,推重比 7.2;最大推力和加力推力下耗油率分别约为 0.96 和 1.95 千克/千克推力·小时;其余数据与 R-29-300 基本相同。
米格-23-11 原型机使用 AL-7F-1,其尺寸约 6,810×1,250 毫米,重 2,010 千克;空气流量 114 千克/秒,总增压比约 8,涡轮前温度 1,200K;最大和加力推力分别约 6,800 和 9,200 千克,推重比 4.6;最大和加力推力下耗油率分别约 0.90 和 1.99 千克/千克推力·小时。
其它主要特点
米格-23 采用半硬壳式机身,主要制造材料是钢和铝合金。飞机的液压系统沿用了米格机传统的双余度设计,即包括完全独立的主液压系统和助力液压系统(分别相当于美机的共用液压系统和飞行操纵液压系统)。主液压系统向机上所有需要液压能源的系统和附件供应能量(含机翼转动和平尾差动),助力液压系统仅对飞行操纵提供液压能源,可保证前者发生故障时飞机的安全返航。两套液压系统压强均为 210 千克/平方厘米。
由于采用了上单翼布局,所以主起落架只能安置在机身,这样便形成了米格-23 相对于以往米格机独特的八字形主起落架(轮距 2.88 米)。且其前起落架为双轮(前主轮距 5.81 米),主起落架为单轮。
米格-23 座舱具有空调系统,可将座舱温度保持在 10~20°C(可自动或手动调节温度),当飞行高度大于 2,000 米时座舱内开始逐渐增压,到 9,000~12,000 米高度将比大气压力高出 0.3 千克/平方厘米(从此直到升限保持这个增压值)。
米格-23 使用的 KM-1M 弹射座椅:全重达 135 千克,可在 0~20 千米高度、表速 130 千米/小时~所有飞行高度上的最大速度条件下提供安全救生。该弹射座椅还配备有“蚊-2M”型无线电通讯电台,弹射座椅降落伞系统动作后可自动启动
飞控系统与飞行性能
飞行控制系统
米格-23 沿用了米格机传统的硬式操纵,在三轴操纵(即俯仰/滚转/偏航操纵)中引入了 SAU-23 自动飞行控制系统(ML 系列为其改型 SAU-23M;23-11 为 AP-155 自动驾驶仪),该操纵系统的主要功用有:按照飞行员给定的数据自动保持飞机姿态;结合攻角传感器自动配平飞机;自动恢复到平飞状态和从低空危险高度自动拉起(前一功能后来为西方战斗机操纵系统所借鉴,后一功能通过与机上 RV-4 无线电高度表交联实现);限制飞机倾斜角在 +/-32° 以内并限制攻角;与远距导航台结合引导飞机到目标上空;与近距导航台结合自动引导飞机下滑到 50~60 米高度以下,然后由人工操纵着陆等。
起降和续航性能
由于采用多用途设计思想和变后掠翼设计,米格-23 的起降性能和续航新型比米格-21 有了明显进步。
米格-23 系列在正常起飞重量下的起飞滑跑距离为 500~650 米(起飞时通常放前襟翼 20° ,后襟翼 25°),着陆速度 240~260 千米/小时(着陆时通常放前襟翼 20°,后襟翼 50°),着陆滑跑距离为 700~810 米(用刹车及减速伞)或 1,200 米(用刹车,不用减速伞)。
机翼处于最小后掠角状态的米格-23ML:变后掠翼的采用是米格-23 起降性能和航程/作战半径得以大大改善的最重要原因
米格-23 系列内部最大燃油携带量为 4,415 千克,机腹下可挂 1 个 490 升或 800 升容量的副油箱,每侧活动翼下的挂架可挂 1 个 800 升副油箱,这样最大载油量达到 6,470 千克。不过由于活动翼下的挂架不能自行旋转以保持顺气流方向,因此只能在最小后掠角时挂副油箱(加大后掠角时则将它与挂架一起抛掉),而在最大后掠角状态下机腹的所挂超音速油箱通常也要抛弃。该机机内油航程约 1,950 千米,转场航程(加上 3 个 800 升副油箱)约 2,820 千米;携带 3 个副油箱和 2 枚空空导弹时作战半径约 1,160 千米,携带 2,000 千克炸弹时约 700 千米(均采用高-高-高飞行剖面)。
高度-速度性能与机动性能
米格-23 的机翼转动可由主液压系统或助力液压系统单独操纵(也可两者同时操纵),在满足一定操纵条件的前提下,若使用两套液压系统同时供压,机翼从最小后掠角转到最大后掠角需 17 秒;若仅采用一套液压系统则需 32 秒,机翼动作滞后于操纵手柄动作 0.3~0.4 秒,所需要的操纵力约为 6.5~7.5 千克(从 16° 到 45° 标示值)和 7.5~8.2 千克(从 45° 到 72° 标示值),在飞行中改变后掠角时要求过载不大于 2g。
米格-23 的滚转能力一般,这在一定程度上与其飞行操纵系统有关,早期的米格-29 由于采用机械操纵也有这个问题
米格-23 的高度-速度包线区均随着后掠角的增大而增大。米格-23 系列最大飞行马赫数为 2.35(约 13,000 米高度,最大后掠),低空最大飞行速度 1,350 千米/小时(300~500 米高度,最大后掠),实用升限 18,300 米(使用 47°40′ 后掠角空战时为 17,800 米;P(MLA)/MLD 型可达 19,000 米)。最小平飞速度约 260 千米/小时,后掠角由小至大对应的最小机动表速约为 400 千米/小时、450 千米/小时和 500 千米/小时。
米格-23 系列空重 10,200~10,900 千克,正常起飞重量 14,800~15,800 千克,最大起飞重量 17,800~18,400 千克,空战推重比约 0.93,空战翼载荷 359.9~393.5 千克/平方米,最大起飞重量时(取 18,400 千克)翼载荷 492.6~538.6 千克/平方米,后掠角由小到大对应的最大使用过载为 4.5g(因此时受到结构强度限制)、6.5g(若马赫数小于 0.8 则可达 7.5g)和 7g。
米格-23 系列在空战格斗时使用中等后掠角,因为此时其盘旋性能最好(垂直机动性和加速性则低于最大后掠角状态)。该机在高度 5,000 米、马赫数 0.9 时最小盘旋半径约 2,200 米,在同一高度马赫数 0.5 时最小盘旋半径约 1,160 米;在 5,000 米高度从马赫数 0.5 加速到 1.2(飞机平均重量 13,400 千克)需 61 秒(最大后掠);海平面和 2,000 米高度最大瞬时爬升率分别约 230 米/秒和 160 米/秒,从起飞爬升到 10,000 米高度需 80 秒。
米格-23 系列均不具备大迎角飞行能力,其 SAU-23 自动驾驶仪对攻角的具体限制是:机翼后掠小于 30° 时攻角小于 12°;大于 30° 时攻角小于 18°。
米格-23 系列中机动性最好的是翼根增加可产生涡流的第 2 个锯齿、机翼前缘襟翼可由计算机自动控制偏转到最佳位置的米格-23MLD,飞过美国 F-15D 和法国“幻影”-2000 的俄罗斯试飞员认为该机的飞行性能已与这两种 4 代机(俄标)相差不大。
航空电子设备
米格-23 的航电设备比以往的苏制飞机有了较大的进步,苏军自用和出口到华约国家的米格-23M 系列的航电设备通常主要包括:RP-23 火控雷达、TP-23 红外搜索跟踪系统、激光测距仪、ASP-23 瞄准具、全自动导引系统、“警笛”3 雷达告警系统以及通信电台、无线电高度表、无线电罗盘、近距导航和着陆系统等,不同型别使用的同型设备往往小有差别。
RP-23 也称“蓝宝石”-23(北约命名“高空云雀”),由俄罗斯头号机载雷达厂商费佐顿(NIIR-Phazotron)科研生产联合体研制生产,天线直径为 750 毫米,工作频率 15G 赫兹(J 波段),单脉冲体制(带连续波照射功能),峰值功率 100 千瓦,对雷达散射截面积为 16 平方米的目标搜索/跟踪距离分别为 85 千米和 54 千米,制导半主动雷达制导导弹(R-23R 和 R-24R)最大距离为 30 千米。美国认为该雷达与其 AN/APG-59 基本相当(用于 F-4J/B/M/K),而我国歼 8B 早期型上的雷达某些方面则优于 RP-23。
向非华约国家出口的米格-23 多数要经过简化,下面以米格-23MS 为例进行简要说明。
米格-23MS 的火控系统被称为“金刚石”-23(Almaz-23),主要包括 RP-22 火控雷达、ASP-PFD-21 瞄准具、SPO-10 雷达告警接收机和 ARL-SM 半自动引导系统等,无红外搜索跟踪装置、激光测距仪和全自动导引能力,且大多数设备沿用或改进自米格-21 的后期型。
作为米格-23M 的简化出口版,米格-23MS 只能实现半自动导引,也没有中距空战能力。它的电子设备有 25% 与米格-21MF 相同,50% 在后者的基础上略加改进,只有25% 是新设备
RP-22 也称“蓝宝石”-21(北约命名“悭鸟”),也是费佐顿产品,还用于米格-21 比斯、米格-23UB 和前 14 架米格-23S。该雷达天线直径 380 毫米,重约 220 千克,工作频率一般认为是 12.88~13.2G 赫兹(J 波段),单脉冲体制,低脉冲重复频率,峰值功率 100~120 千瓦,方位扫描角度 60°、俯仰扫描角度 +/-20°,扫描速度 2.9°~3.6°/秒,波束宽度 3.5°×3.5°,对雷达散射截面积为 16 平方米的目标搜索/跟踪距离分别为 20~25 千米和 14~17 千米。该雷达基本性能大致与我国的歼 8A 上的 204 雷达相当。
ASP-PFD-21 瞄准具可连续计算机炮对空/对地攻击提前角和瞄准角(分别用于前置射击和热线快速射击)、发射火箭弹时的修正角并以固定环方式发射 R-3S/R 导弹。在空对空状态使用机炮或 S-5 火箭弹时射击距离为 550~2,000 米,空对地时为 1,150~2,000 米;使用 S-24 火箭弹对地攻击时设计距离为 1,550~2,000 米,作战使用高度 200~17,000 米,目标速度 500~2,000 千米/小时,系统重量约 25 千克。
SPO-10 雷达告警接收机(RWR)天线安装在固定翼段前缘和垂尾后上方,可在全方位和俯仰 +/-45° 范围内接收工作频率 7.5~16.67G 赫兹(H/I/J 波段)、脉冲重复频率 400~8,000 赫兹、脉冲宽度 0.2~5 微秒的雷达信号,并以灯光和音响信号报警,且对对方雷达的“搜索”和“截获”信号分别有不同的报警方式,不包括电缆重量不超过 3 千克。
ARL-SM 半自动引导系统也称“兰天-M”,用于飞机起飞达到一定位置后接受地面指挥所的指挥,该系统可使地面控制员控制飞机的飞行状态和航向、进行导弹预热和打开飞机发动机的加力、提供敌机和载机距离等。载机先根据引导指令进入敌机后半球并到达雷达可以捕获敌机的阵位,一般在载机距敌机 36 千米时引导工作结束,由飞行员打开雷达进行瞄准和攻击。在整个引导过程中载机雷达仅处于预备接通状态,因此提高了抗干扰能力和攻击的隐蔽性。
不论是米格-23MS 还是其它型别,其航电设备大多都采用电子管和晶体管混合元件,导致设备体积、重量大和耗电量大,这也是苏制飞机一直落后于美国的地方;但是这些设备毕竟装到了飞机上并实现了其应用的功能,这说明苏联设计师很善于进行系统综合。
机载武器系统
米格-23 的固定武器是一门 GSh-23L 双管 23 毫米加斯特航炮,安装在前机身正下方、进气道唇口后约 250 毫米。炮重 52 千克,备弹 200 发(总重约 34.8 千克),射速每分钟 3,200~3,400 发/分,弹丸初速 715 米/秒。具有不限时射击(4 秒内打完全部弹药)和 0.3 秒限时射击(每次发射 16 发左右)两种射击方式。
米格-23 最大外挂载荷为 3,000 千克,其中最大载弹量为 1,600 千克。除机身中央挂架外,每边进气道和机翼固定段下各有 1 个武器挂架,每边活动翼下还可增加 1 个带 800 升副油箱的挂架以增大航程(后掠角为 18°40′ 时)。各武器挂架可挂航炮吊舱、空空导弹、火箭巢、自由落体炸弹等。
米格-23 可使用的空空导弹包括 R-3(美国编号 AA-2,北约命名“环礁”)、R-23/24(AA-7,“尖顶”)和 R-60(AA-8,“蚜虫”),米格-23MLD 和米格-23-98(方案)还可使用 R-27(AA-10,“白杨”)和 R-73(AA-11,“射手”),后者还可使用 R-77(AA-12,“蝰蛇”)。大多数型别可同时携带 6 枚空空导弹(每个机翼固定段挂架挂 1 枚,每个进气道下 APU-60/2 型挂架挂 2 枚),配置通常为 2+4(近距空战时指半主动雷达弹+红外弹,拦射时指拦射弹+格斗弹);而 SM/MS 型只能挂 4 枚(进气道下每个挂架只能挂 1 枚),配置通常为 2+2。
R-3 是由图西诺的试验设计局(后“三角旗”机械制造设计局)在 AIM-9B 基础上发展,主要有红外型的 R-3S 和半主动雷达型 R-3R。前者尺寸(长×弹体直径×翼展,下同)2,837×127×528 毫米,发射重量 75.3 千克,硫化铅导引头,射程 1.2~7.6 千米;后者尺寸 3,417×127×528 毫米,发射重量 82 千克,射程 1~8 千米。两者战斗部均为 11.3 千克高爆破片,最大速度马赫数 2.5(杀伤半径 9~10 米,无线电近炸引信),最大过载 10~11g,最大使用高度 21,000 米。
R-3S
R-23/24 是由“三角旗”机械制造设计局研制的中距拦射弹,俄罗斯公布的米格-23 战果主要是使用它们获得的。R-23 在 1969 年开始服役,中段指令+末段被动红外型 R-23T 尺寸 4,180×200×1,000 毫米,发射重量 217 千克,战斗部为 35 千克高爆破片(主动雷达引信),射程 4~25 千米;中段指令+末段半主动雷达型 R-23R 尺寸 4,460×200×1,000 毫米,发射重量 223 千克,射程 4~35 千米,其余数据与红外型相同。R-24 作为 R-23 的改进型在 1981 年开始服役,中段指令+末段被动红外型 R-24T 尺寸 4,800×230×1,000 毫米,发射重量 248 千克,战斗部为 35 千克高爆破片(主动激光引信),射程 4~25 千米;中段指令+末段半主动雷达型 R-24R 尺寸 4,800×230×972 毫
Ⅷ 跳伞的最高高度和最低高度分别是多少米
跳伞有安全高度的限制,分最低和最高两个数值。
一般情况下,最高安全高度是以人体承受大气压力的极限所规定,因为高度越高,空气越稀薄、气压越小、温度越低,人体生理就不能够承受,一般情况下认为最高安全高度为5000米。
不过这是那些不带护具的跳伞高度,配合氧气设备、防寒服装等,专业的跳伞运动员和跳伞爱好者经常挑战更高的高度,大多数跳伞运动都是在7500米左右起跳的。
而最低高度受限于降落伞的设计,考虑到降落伞的尺寸、打开的速度等因素,如果高度过低,降落伞很可能不会完全打开,从而影响安全。此外,综合考虑飞行速度、跳伞方式等也有影响。
通常意义下普通飞机跳伞的最低安全高度500米,军用伞兵的降落伞的最低安全高度设计可能达到了300米。而战斗机弹射座椅在100米以上弹出还是能够保证安全。
在飞机之外低空跳伞运动也是一个方面,目前低空跳伞的最低开伞纪录是50米。
应该说“安全高度”本身不是绝对的,因为保证安全首先就是为了生命安全留出了更多的不确定量。历史上有很多次飞行员为了人民群众的安全而冒险在更低的高度跳伞,例如曾经有一次飞行表演中飞行员为了保证看台上面观众的安全,控制飞机到宽阔的地方坠毁,而自己在飞机坠毁的瞬间弹射救生,那时候的跳伞高度已经接近0了。
我这也是自己所了解的,没什么数据证明,有兴趣的话可以去“中国跳伞网”
Ⅸ 先进的弹射系统能保证飞行员在大于多少米的高度安全逃生
15米
SU--27飞行员在一次航空表演时出现危机 快落地15米时弹射逃生成功